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VALIDATION OF THE CONSISTENT-YEAR V003  
MODIS LAND COVER PRODUCT 

ABSTRACT 
We estimate the accuracy of the IGBP layer of our Consistent-Year Land Cover product (V003) to be 75–
80 percent globally; 70–85 percent by continental regions; and from 60–90 percent individual classes. 
These estimates are supported by quantitative analysis of (1) classification of unseen training sites; and (2) 
confidence values aggregated by land cover class and continental region. Accordingly, we deem the prod-
uct to be VALIDATED—LEVEL 1. 

INTRODUCTION 
The purpose of the MODIS land cover product validation activity is to provide information to users of our 
land cover data describing the accuracy of our classifications and their inherent error structure. We use two 
primary tools to assess the quality of our product: confusion matrixes and aggregations of confidence val-
ues. The confusion matrixes describe how well the training sites are classified when they are “unseen” by 
the classifier, and so provide information on the accuracy of the classification process as applied to the 
training site database. The confidence values are generated by the classifier and indicate how well the pat-
tern of spectral and temporal variation in annual observations of each pixel fits the examples of training 
data provided to the classifier. They may be treated as probabilities of correct classification, given the input 
training data.  These tools are fully repeatable, and will be used to assess future releases of the land cover 
product. 
 
Before we discuss these two analytical tools and their application to validation of the MODIS consistent-
year land cover product, it will be helpful to provide an overview of the classification process by which the 
consistent-year land cover map was made. 

THE CLASSIFICATION PROCESS 

The Decision Tree Classifier 
In outline, the MODIS land cover product uses a supervised classification approach in which training sites 
are provided to a decision-tree classifier. The classifier then generates a decision tree that is exercised on 
the global data field, thus making a global map. This process is described in more detail in Friedl et al. 
(2002).  
 
The classification is enhanced by boosting. In this process, training data are input to the classification algo-
rithm and a decision tree is estimated. The decision tree is then exercised on the training data. The outcome 
is compared to the input training data and a new decision tree is estimated, but this time the training pixels 
that are incorrectly classified are weighted more heavily. This new decision tree is in turn exercised, and 
based on its output, the training sites are again reweighted. The process continues until 10 boosted decision 
trees are prepared. The final classification of each pixel uses all 10 trees, which are taken as experts that 
vote on the proper label for the pixel. The label is then assigned using a plurality rule. Statistical theory 
shows that the voting process using boosted trees can be used to estimate the probability that a pixel be-
longs to each class. This allows direct application of prior probabilities to the classification output, a tech-
nique that provides a powerful tool for adding prior knowledge to improve the global classification map 
(McIver and Friedl, 2002). 

Prior Probabilities 
Given a spectral signature for a pixel and a set of training sites, the boosted classification process yields a 
set of probabilities of membership of the pixel in each of the classes. The class label can then be assigned 
using the class associated with the highest probability. However, the accuracy of a final map can be im-
proved by using prior probabilities. Prior probabilities specify how likely each class is to appear at each 
geographic location, based on prior knowledge. By using Bayes’ rule to combine the classification prob-



 2 

abilities with the prior probabilities for each pixel, a set of posterior probabilities is calculated that merges 
the two sets. The class label is then assigned using the posterior, rather than the classification, probabilities.  
 
For example, suppose a dark pixel from a lava flow in the Sahara Desert is classified as water. By specify-
ing that the prior probability of open water in the Sahara is low but the probability of a barren or sparse 
land cover is high, the posterior probability for water decreases and the posterior probability for bar-
ren/sparse increases. This change shifts the label assigned from water to barren/sparse. 
 
It is also possible to use multiple sets of prior probabilities in succession to combine different types of prior 
information. The MODIS consistent-year land cover product includes the application of four sets of prior 
probabilities. These are: 
 

1. Priors from the IGBP DISCover I land cover map (MODIS at-launch land cover product). These 
priors were determined for each pixel by passing a 200 by 200 pixel moving window across the 
IGBP DISCover I land cover map and using the proportions of land covers within that window as 
estimates of prior probabilities. This amounts to a smoothing operation that tends to preserve the 
general distribution patterns of land cover types from the IGBP DISCover heritage product. In 
combining classification probabilities with this set of priors, the priors were weighted at 50 per-
cent. 

 
2. Priors from the Foley map of global agricultural intensity. This map provides an index of agricul-

tural activity at a 1/2° spatial resolution. We smoothed the coarse grid cell structure of this map to 
1 km by using a 200 by 200 moving window, then applied a prior-probability adjustment to crop-
land and noncropland classes. This prior source was also weighted at 50 percent. 

 
3. Correction for sample distribution. The decision-tree classifier optimizes the classification for the 

training samples at hand. If one class dominates the training sites, the classifier will respond by 
creating more nodes for that class. If another class is represented by only a few samples, the classi-
fier creates fewer nodes. This property tends to integrate the class distribution of the training sites 
into the structure of the classifier. To remove this effect, we reverse-weight the classification 
probabilities by the distribution of training site pixels. The reverse weighting lowers the classifica-
tion probabilities of the classes that are better represented in the training sample and raises the 
probabilities of those that are less well represented in the sample. 

 
4. Global land cover class distribution. As a last correction, the probabilities are weighted by a single 

set of prior probabilities—the entire global distribution of land cover classes from the IGBP DIS-
Cover map. This preserves the general balance of land cover types across all continents and re-
gions. 

CONFUSION MATRIX 
The confusion matrix is a commonly used tool for assessment of accuracy for land cover classifications. 
The matrix scores how the classification process has labeled a series of test sites or test pixels at which the 
correct land cover label is known. Typically, the true class label is displayed across rows, while the actual 
mapped class is displayed in columns. The diagonal of the confusion matrix displays the number of sites or 
pixels for which the true class and the mapped class agree. The overall accuracy of the entire sample is 
then the sum of the diagonal elements divided by the total of all sites or pixels. For individual classes, the 
marginal totals of the matrix can easily be used to estimate the producer’s accuracy and user’s accuracy 
from the samp le. The producer’s accuracy is the probability that a pixel truly belonging to class i is also 
mapped as class i, while the user’s accuracy is the probability that a pixel mapped as class i is truly of class 
i. Using marginal and diagonal totals to estimate these accuracies, however, is subject to bias if the propor-
tions of classified sample sites or pixels across classes is different from the proportions of classes in the 
output map. To remove these biases, the proportions of classes observed for the entire map are used in 
computation (Card, 1982). 
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Note that for the confusion matrixes presented here, the classifier label is assigned after the application of 
prior probabilities as described above. In this way, the output classification used in validation is  most simi-
lar to the output used to construct the map. If output class labels are compared to true classes before appli-
cation of priors, the confusion matrix scores fewer errors and yields higher producer’s and user’s accura-
cies. Thus, the prior probabilities have the effect of detuning the classifier slightly and producing a 
smoother map that, in our judgment, is a better output.  

Sample Design 
Proper statistical characterization of accuracy as measured by a confusion matrix depends on a proper sam-
ple design for choosing test sites or pixels. Typical sample designs are random, random stratified, and ran-
dom systematic. These have different implications for determining both overall accuracy and the accuracy 
of individual classes. 
 
In a random sample, each pixel (assuming equal-area pixels) has the same probability of being chosen as all 
other pixels. The random sample is the simplest design and is the most efficient for determining the overall 
accuracy. However, it has the drawback that small or rare land cover classes may be rarely sampled, if at 
all, and thus the accuracies of individual classes are not known with the same level of precision. That is, 
large classes will tend to have more samples, while smaller classes will have fewer.  
 
The solution to this problem is the random stratified sample, in which a fixed number of test sites or pixels 
is drawn from each mapped class. Thus, the smallest and largest classes are sampled using the same num-
ber of samples, and the confidence intervals placed on within-class accuracies are comparable. The random 
stratified sample requires that all sites or pixels within a mapped class have an equal probability of being 
sampled. Thus, each pixel of a small or rare class is more likely to be sampled than a pixel of a large class. 
But since we know the area of each class, we can still find a proper overall accuracy estimate by weighting 
the accuracy of each class by its area. 
 
The random systematic design overcomes the problem that a chance throw of samples onto a geographic 
grid may leave large portions of the grid sparsely sampled or even entirely unsampled. Since land cover has 
a broad geographical component based on climate, ecology, and human land use patterns, it is important to 
ensure that there is substantial representation in the sample from all important regions. Thus, a global map 
may be sampled by continents, with equal or at least fixed sample sizes allocated to each continental re-
gion. As in the case of the random stratified sample, the area of each continent is known and is used to 
weight the overall accuracy calculation. For smaller regions, the area may be divided into a coarse equal-
area grid, with equal numbers of samples drawn from each grid cell. Note also that a sample may be both 
stratified and systematic. This is probably the best overall type of sample for validation of a global map 
product, provided that the sample size is large enough to capture the variance of rarer classes with accept-
able precision. 
 
The major drawback of any random sample design as applied to a global map product is cost. For example, 
the true land cover class for a site or pixel is best determined by visiting the location on the ground. 
Clearly, this is not practical for a global random sample. As a result, pathfinder efforts in global land cover 
validation have used high-resolution satellite imagery, such as Landsat data, to “visit” sample sites and 
determine their proper land cover class (Scepan, 1999). Even with this approach, however, the cost of ac-
quiring recent and useful imagery and carrying out its proper interpretation is typically prohibitive. 

MODIS Land Cover Approach 
Since we lack sufficient resources to conduct proper random sampling, we instead look to the classification 
of the samples we have on hand—i.e., the training sites. If the training sites are truly representative of the 
range of variation in each land cover type, then our training sample may also serve as a validation sample. 
In this approach, the true label of the training site and its pixels is compared to the labels assigned to the 
pixels by the classifier. However, the accuracies reported will be biased toward high values, since the clas-
sifier has already seen the data used for testing. To avoid this problem, we adopted the following proce-
dure: 
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1. Randomly divide the population of train/test sites into 10 groups of nearly equal size. 
2. For each group, train the decision-tree classifier using the remaining 9 groups of sites, thus hold-

ing the group unseen from the classification process. 
3. Classify the pixels within the sites of the group and report the result to the confusion matrix.  

 
Note that the division is made by random assignment of sites, not pixels. The reason is that pixels at an 
individual training site tend to be correlated, so that only a few training pixels from each site are needed to 
convey the signal of that site to the classifier. In a random assignment of pixels in which the classifier sees 
90 percent of the pixels, the classifier will actually get a look at nearly all the training sites. The result will 
be an inflated accuracy that does not truly reflect the ability of the classifier to generalize beyond the sites it 
has already seen. In our trials, random sampling of pixels typically produces accuracies 10–15 percent 
higher than random sampling of sites. We think the lower values are more likely to represent the true accu-
racy of the MODIS product. 
 
Note also that our final map is made using all training sites. Because all the information is used in produc-
ing the final map, we think it is likely to have a slightly higher accuracy than that estimated by using ten, 
slightly different, 90-percent sample decision trees.  

Continental Regions 
To investigate the broad range of accuracy values across the continents, we determined accuracies within 
continental regions as well as globally. Our five continental regions include North America, South Amer-
ica, Africa, Eurasia, and Australia-Insular Asia. (Although there is some small land area in Antarctica that 
is not snow or ice covered, it is not included in the consistent-year land cover product.) These five regions 
are bounded by whole 10-degree tiles in the MODIS sinusoidal Level 3 grid as shown in Figure 1. Note 
that some tiles are considered to be part of two regions. They are identified as “Common Areas” in the 
graphic. For example, the four tiles centered on the Mediterranean Sea are included in both Eurasia and 
Africa in the generation of continental statistics.  
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Figure 1. Continental regions used in accuracy assessment. 

 

Training Site Distribution 
Table 1 presents the distribution of sites and pixels by class. A total of 1,370 training sites including 39,472 
pixels are used in this analysis. The number of sites varies significantly by land cover type, with cropland 
accounting for the largest number of training sites, followed by evergreen broadleaf forest, evergreen nee-
dleleaf forest, and barren/sparse sites. Among the classes represented by relatively few sites are permanent 
wetlands, deciduous needleleaf forest, and closed shrublands. For these types, it is difficult to find homoge-
neous sites of sufficient size for our application. Snow and ice and water are also represented by small 
numbers of sites, but as shown by their pixel counts, these sites are much larger.  
 
Note also that urban and built-up lands (class 13) are omitted. In the consistent-year product, the urban 
class was determined from the Digital Chart of the World. Classification of urban and built-up lands from 
training sites is particularly problematic with spectral-temporal data alone, since the many components of 
urban land covers (soil, pavement, vegetation, building materials) do not provide a consistent signal that 
can be classified with good accuracy. 



 6 

 

Table 1. Global counts of sites and pixels by land cover class. 

IGBP Land Cover Class 
Training Site 

Count 
Training Pixel 

Count 
Global Pixels 

Classified 
Global Areal 
Percentage 

1. Evergreen Needleleaf 131  2,056  7,100,847  3.92 

2. Evergreen Broadleaf 204  5,409  17,583,346  9.72 

3. Deciduous Needleleaf 15  261  2,374,908  1.31 

4. Deciduous Broadleaf 57  758  2,016,765  1.11 

5. Mixed Forest 96  2,077  8,209,766  4.54 

6. Closed Shrubland 20  466  1,068,970  0.59 

7. Open Shrubland 87  1,679  31,929,221  17.75 

8. Woody Savanna 55  1,167  10,702,581  5.92 

9. Savanna 44  1,098  11,218,832  6.20 

10. Grasslands 87  1,474  12,363,432  6.83 

11. Permanent Wetlands 13  289  559,675  0.31 

12. Cropland 263  6,240  17,087,489  9.44 

14. Cropland/Nat Veg Mosaic 72  1,447  5,660,478  3.13 

15. Snow and Ice 10  1,346  16,501,715  9.12 

16. Barren/Sparse 108  4,492  21,977,613  12.15 

17. Water 63  9,213  14,575,749  8.06 

Total 1,370  39,472  180,928,968  100.00 

 
Table 2. presents the distribution of training sites and pixels by continental region. (Because of overlap 
among regions, site and pixel counts will total larger than the global counts shown in Table 1.) The Eura-
sian continental region, by virtue of its large size, shows the largest number of sites. North and South 
America are about equally represented in sites, although the South American sites tend to be smaller. Afri-
can test sites are significantly fewer. The Australia and Insular Asia region has the fewest sites, which is 
partly due to the large Australian desert and the vast areas of broadleaf evergreen forests in equatorial Asia. 
Figure 2 plots the locations of the training sites. 
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Table 2. Site and pixel counts by region. 

IGBP Land Cover Class 
Training Site 

Count 
Training Pixel 

Count 
Global Pixels 

Classified 
Global Areal 
Percentage 

Global 1,370 39,472  180,928,968  100.0 

North America 368  13,731 30,918,663 17.1 

South America 321  8,030 22,181,052 12.3 

Eurasia 560  13,290  71,275,640 39.4 

Africa 194  5,744  38,711,576 21.4 

Australia-Insular Asia  46  1,766 18,046,575 10.0 

 
 

 
Figure 2. Distribution of training sites. 

 

Global Confusion Matrix 
Table 3 presents the global confusion matrix for unseen test sites. The data show the counts of pixels tabu-
lated by training site class and output class label. The table counts nearly 40,000 pixels from 1,370 training 
sites.  
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Table 3. Confusion matrix based on classification of unseen test sites (pixel counts). 

Output Class Label Training 
Site Label 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 14. 15. 16. 17. 

Row 
Total 

1. Evrgrn  
Ndlleaf 

1323 13 65 23 407 7 35 96 11 6 20 35 7 0 2 6 2056 

2. Evrgrn  
Brdleaf 

12 5139 0 3 3 2 7 141 48 14 1 18 14 0 3 4 5409 

3. Decid  
Ndlleaf 

20 0 102 3 85 0 5 38 1 3 1 3 0 0 0 0 261 

4. Dedic  
Brdleaf 

7 11 15 381 243 1 10 34 10 9 0 16 11 0 2 8 758 

5. Mixed  
Forest 

167 3 50 178 1370 1 9 59 7 29 70 71 52 0 0 11 2077 

6. Closed  
Shrblnds 

24 18 0 0 6 129 154 37 55 14 0 29 0 0 0 0 466 

7. Open  
Shrblnds 

4 4 2 17 9 53 1204 27 9 170 3 5 0 1 168 3 1679 

8. Woody  
Savanna 

76 56 0 6 61 3 97 617 154 47 0 36 12 0 0 2 1167 

9. Savanna 1 53 3 0 4 25 84 303 504 49 7 13 49 0 3 0 1098 

10. Grass- 
land 

5 36 0 1 4 1 161 15 69 1028 0 78 20 0 54 2 1474 

11. Wetland 60 15 0 1 7 0 9 9 2 8 174 3 1 0 0 0 289 

12. Cropland 23 46 3 33 21 15 243 142 252 365 0 4775 299 0 13 10 6240 

14. Crp–Vegn 
Mosaic 

2 134 0 195 62 3 9 113 150 29 0 197 546 0 3 4 1447 

15. Snow – 
Ice 

1 0 0 0 0 0 31 0 0 3 0 2 0 1261 47 1 1346 

16. Barren 2 6 0 2 12 38 491 10 10 56 0 9 2 0 3853 1 4492 

17. Water 7 5 0 9 11 1 2 0 2 6 0 12 3 0 0 9155 9213 

Column 
Total 

1745 5541 241 879 2334 279 2574 1647 1289 1858 278 5464 1021 1262 4151 9210 39773 

 

Global and Continental Accuracies 
While the confusion matrix shows the exact distribution of training and output class labels, it must be fur-
ther processed to give useful statistics. These are calculated using the confusion table and the proportions of 
classes within the entire consistent-year product (Table 1) following the theory and examples shown in 
Card (1982) for random stratified sampling. Table 4 presents results globally and by continental region. 
Table 5 shows global per-class accuracies and proportions. (Confidence intervals assume variances are as-
ymptotically distributed as normal distributions.)  
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Table 4. Global accuracy and accuracy of continental regions (percent). 

95% Confidence Interval 
Region Accuracy 

Estimate 
Standard 

Error Low High 

Global 71.6  0.25  71.1  72.1  

Africa 61.7  0.66  60.3  63.0  

Austr & Insular Asia 71.9  2.93  66.1  77.8  

Eurasia 67.8  0.40  67.0  68.6  

North America 61.3  0.62  60.0  62.5  

South America 75.4  0.46  74.4  76.3  

 
As shown in Table 4, the global accuracy as estimated by the training site confusion matrix is 71.6 ± 0.25 
percent, giving a confidence interval of 71.1, 72.1 percent. The small standard error of 0.25 percent is due 
to the very large number of samples. Accuracy varies among continental regions from a low of 61.3 percent 
for North America to a high of 75.4 percent for South America.  

Accuracies by Land Cover Class 
Table 5 documents per-class accuracies derived from the training site confusion matrix. Producer’s accu-
racy is  the probability that true pixels are correctly classified and thus includes only errors of omission. 
User’s accuracy is the probability that mapped pixel labels are correct and thus includes only errors of 
commission. The areal proportion estimates take the confusion matrix and the mapped class proportions 
into account, and so are somewhat different from the raw proportions observed (Table 1). 
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Table 5. Global per-class accuracies, consistent-year land cover product (percent) 

Producer’s Accuracy 
User’s 

Accuracy 
Areal 

Proportions IGBP Land 
Cover Class 

Est. 
Std. 
Err. 

CI - CI + Est. 
Std. 
Err. 

CI - CI + Est. 
Std. 
Err. 

CI - CI + 

1. Evergreen Needleleaf 60.0 1.0 58.0 62.0 75.8 1.0 73.8 77.9 4.9 0.1 4.7 5.1 

2. Evergreen Broadleaf 90.3 0.5 89.2 91.4 92.7 0.3 92.0 93.4 9.8 0.1 9.7 10.0 

3. Deciduous Needleleaf 57.7 2.8 52.2 63.3 42.3 3.2 36.0 48.7 0.9 0.1 0.8 1.1 

4. Deciduous Broadleaf 34.0 1.5 31.0 37.1 43.3 1.7 40.0 46.7 1.4 0.1 1.3 1.5 

5. Mixed Forest 61.5 1.1 59.4 63.6 58.7 1.0 56.7 60.7 4.3 0.1 4.1 4.4 

6. Closed Shrubland 14.2 1.1 12.1 16.3 46.2 3.0 40.3 52.2 1.9 0.1 1.7 2.1 

7. Open Shrubland 85.0 0.6 83.7 86.3 46.8 1.0 44.8 48.7 9.6 0.2 9.2 9.9 

8. Woody Savanna 51.6 1.4 48.8 54.4 37.5 1.2 35.1 39.8 4.2 0.1 4.0 4.5 

9. Savanna 52.4 1.4 49.6 55.1 39.1 1.4 36.4 41.8 4.6 0.1 4.3 4.8 

10. Grasslands 66.2 1.2 63.7 68.7 55.3 1.2 53.0 57.6 5.6 0.1 5.4 5.9 

11. Permanent Wetlands 37.9 2.7 32.6 43.2 62.6 2.9 56.8 68.4 0.5 0.0 0.4 0.6 

12. Cropland 58.1 0.6 56.8 59.4 87.4 0.4 86.5 88.3 14.0 0.2 13.7 14.3 

14. Cropland/Nat Veg Mosaic 42.5 1.1 40.2 44.8 53.5 1.6 50.4 56.6 3.9 0.1 3.7 4.1 

15. Snow and Ice 96.6 0.4 95.9 97.4 99.9 0.1 99.8 100 10.8 0.0 10.7 10.9 

16. Barren/Sparse 74.8 0.7 73.4 76.2 92.8 0.4 92.0 93.6 14.9 0.1 14.6 15.2 

17. Water 98.3 0.2 97.9 98.8 99.4 0.1 99.2 99.6 8.0 0.0 8.0 8.1 

 
 
Producer’s accuracies range from a low of 14.2 percent for closed shrubland, to 98.3 percent for water. The 
low value for closed shrubland occurs because many training pixels of this class are confused with open 
shrubland (Table 3). The next -lowest value is for deciduous broadleaf forest, which is typically confused 
with mixed forest. Note also the small number of pixels in this training class (Table 3). Like water, ever-
green broadleaf forest and snow and ice also have high producer’s accuracies. 
 
User’s accuracies are somewhat less variable, ranging from 39.1 percent for savanna to 99.9 percent for 
snow and ice. From the confusion table (Table 3), we note that savanna is often mapped as woody savanna 
or cropland. Other classes with low user’s accuracies are deciduous needleleaf forest, deciduous broadleaf 
forest, closed shrubland, and open shrubland. These are typically confused with evergreen needleleaf and 
mixed forest; mixed forest and cropland-natural vegetation mosaic; open shrubland; and barren and crop-
land; respectively.  
 
In general, producer’s and user’s accuracies are fairly similar for most classes. Where omission and com-
mission errors are quite different, however, so are the two corresponsing accuracies. For example, closed 
shrubland shows a producer’s accuracy of 14.2 percent and a user’s accuracy of 46.2 percent. Here most of 
the errors are by omission rather than commission, and many closed shrubland pixels were classified into 
open shrubland. For closed shrubland, the reverse is true, with producer’s accuracy at 85 percent and user’s 
accuracy at 46.8 percent. Here the errors are mostly of commission. As noted above, a significant number 
of barren pixels are being classified into open shrubland. 
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While most estimated areal proportions shown in Table 5 are similar to those reported by pixel counts from 
the global map (Table 1), there are significant differences for open shrubland and cropland. Open shrubland 
is observed at 17.4 percent of pixels, while its actual estimated areal proportion is 9.6 percent. Here we see 
the errors of commission, documented by the low user’s accuracy of 46 percent, pulling down the areal 
estimate. For cropland, the reverse is true. While 9.3 percent of pixels are classified as cropland, the estima-
tor reports 14.0 percent cropland. In this case, it is the high omission error rate for cropland that boosts the 
areal estimate.  

CONFIDENCE VALUES 
As discussed in a preceding section, another statistic of use in evaluating a classification product is the con-
fidence value, which is an output of the classifier that expresses the probability that the pixel being classi-
fied matches the training pixels input to the classifier.(Here values are expressed as percents.) Table 6 pre-
sents average confidence values by land cover classes, which range from 52.3 percent for permanent wet-
lands to 90 percent for barren lands. The average accuracy of all land cover types is 70.7 percent, while an 
average weighted by the estimators of global areal proportions (Table 5) is 78.3 percent. 
 
Note that the confidence value for water is not available due to difficulties with the land-water mask that is 
overlain on the classification output. The area-weighted average uses a confidence value of 90 percent for 
water, based on its high producer’s and user’s accuracies. 
 

Table 6. Global confidence values by land cover class (percent) 

IGBP Land Cover Class Average Confidence 
Value 

1. Evergreen Needleleaf 68.3 

2. Evergreen Broadleaf 89.3 

3. Deciduous Needleleaf 66.7 

4. Deciduous Broadleaf 65.9 

5. Mixed Forest 65.4 

6. Closed Shrubland 60.0 

7. Open Shrubland 75.3 

8. Woody Savanna 64.0 

9. Savanna 67.8 

10. Grasslands 70.6 

11. Permanent Wetlands 52.3 

12. Cropland 76.4 

14. Cropland/Natural Veg 60.7 

15. Snow and Ice 87.2 

16. Barren 90.0 

17. Water (Not Available) 

 Average Value, All Classes 70.7 

 Area-Weighted Average 78.3 

 
 



 12 

 
Table 7. Global confidence values by continental regions (percent). 

Region Average Confidence Value 

Global 76.3 

Africa 79.4 

Austr & Insular Asia 83.2 

Eurasia 76.8 

North America 71.9 

South America 78.5 

 

DISCUSSION 

Global and Regional Accuracies 
It is important to note that the accuracies reported in Tables 4 and 5 are valid only to the extent that the 
confusion table constitutes a random sampling of pixels and thereby captures the true variability of the 
map. However, in this case, the training samples cannot be considered a random sample.  
 
Given the high cost of high-resolution imagery on which to delineate training sites, we selected many of 
our training sites using Landsat scenes obtained for other projects, both at Boston University and at other 
locations by other research groups. With scenes at hand from a particular continental region, we simply 
looked for “good training sites” within these scenes for the land cover types found within the region. Selec-
tion of sites also depended on the availability of good ancillary information. In addition to these “typical” 
sites, we also placed many sites in regions where either the classifier was having difficulty or we antici-
pated difficulty due to the complexity of the region. Often this required purchasing Landsat scenes to pro-
vide training sites in the problem areas. Thus, our training samples cannot be considered to be either ran-
dom samples or even a representative sample of our consistent-year product. 
 
Although the impact of this problem on our accuracy statistics is uncertain, it is likely that our training site 
selection has biased the results to the low side. Most classes will have large core areas in which they are 
well-developed and easily recognized, and a random sample can be expected to draw many pixels from 
such core regions. However, we tend to have relatively fewer training sites from these areas, since they are 
relatively homogeneous and provide little new information to the classifier. In fringe areas, where classes 
intergrade and transitions are frequent, we have proportionally more training sites, and in these regions, 
errors are likely to be more frequent. In addition, a small increment in accuracy may be inferred from the 
fact that the final classification uses all training sites, whereas the confusion matrix uses decision trees that 
omit ten percent of the sites. 
 
The former estimate is also very consistent with the area-weighted confidence average of 78.3 percent, 
shown in Table 6 above. These values significantly exceed the error reported for a proper stratified random 
sample of the IGBP DISCover Land Cover product derived from AVHRR, which is 66.9 percent (Scepan, 
1999). 

Accuracies of Individual Land Cover Types 
As reported above, the accuracy estimates for individual land cover types vary widely when taken from the 
confusion matrix. In many cases, this represents the inability of the classifier and the input data stream to 
differentiate consistently among intergrading types. For example, closed shrubland, open shrubland, grass-
land, savanna, and woody savanna can be taken as gradations of a land surface with varying amounts of 
tree, shrub, and grass cover. Distinctions among these types are difficult to make with coarse-resolution 
spectral-temporal data alone. Significant gradation also occurs between evergreen needleleaf, deciduous 
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broadleaf, and mixed forest in North America, with deciduous needleleaf substituting for evergreen nee-
dleleaf forest in Eurasia. Another group of interrelated classes includes grassland, cropland, and crop-
land/natural vegetation mosaic. 
 
In spite of these difficulties, some classes are recognized with high accuracy. These include evergreen 
broadleaf forest, snow and ice, barren/sparse, and water. Given their persistent and distinctive spectral sig-
natures, it is not surprising that these classes are consistently classified correctly. 
 
We should also note here that our training site database needs further improvement, including the addition 
of training sites in small classes. For example, the database includes only 15 training sites and 261 pixels 
for deciduous needleleaf forest. While this type is rather rare, as most of the Siberian larch forest is actually 
woody savanna by the IGBP definition, clearly more training sites are needed before we can have any faith 
in the estimated accuracies of this class. This is also the case with permanent wetlands, for which the data-
base includes 13 sites and 289 pixels. In fact, the wide variance in training sites and pixels across classes 
precludes a formal analysis of individual errors, such as the probability that a pixel is actually grassland 
when it has been classified as cropland, or the probability that a pixel is actually evergreen needleleaf forest 
when it is actually mixed forest. 
 
Given the inadequacies of the training site data, both from the viewpoint of its departure from a random 
sample and the fact that it significantly undersamples some classes, we think that the per-class confidence 
values, shown in Table 6, are likely to better represent the range of producer’s and user’s accuracies that 
are truly characteristic of our consistent-year land cover product. These vary from 60 percent for closed 
shrubland to 90 percent for barren/sparse, and conform well with our opinion of the classifier’s ability and 
our map’s accuracy. This is also about the range in accuracies observed for the IGBP DISCover dataset 
(Scepan, 1999). 
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